Maize leaf disease classification using convolutional neural network

نویسندگان

چکیده

Agriculture faces a variety of maize diseases that farmers are unable to identify them. Diseases grow from day and many crops will die due lack proper treatment also failing in finding what kind disease it has been. The most common Common rust, Northern leaf grey spot, Blight etc. Examining the plant with bare eyes identifying result imprecise detection diseases. This, turn lead inappropriate usage pesticide causes harmful chronic human beings. So, automatic accurate identification is essential food security. Society can produce enough meet demand using recent technologies. application digital technologies may save time protect decaying well advance. Hence, an idea for detecting affected automatically be more useful farmers. Deep learning recently grabbed attention researchers helped develop system image classification. deep techniques its variants have great potential modern agriculture. main focus this article on fine-tuning evaluation Convolutional Neural Networks (CNN) image-based leaves In work, CNN used detect classify order increase accuracy detection, AlexNet architecture disease. CNN, 87% architecture, 98.5% achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D model classification using convolutional neural network

Our goal is to classify 3D models directly using convolutional neural network. Most of existing approaches rely on a set of human-engineered features. We use 3D convolutional neural network to let the network learn the features over 3D space to minimize classification error. We trained and tested over ShapeNet dataset with data augmentation by applying random transformations. We made various vi...

متن کامل

Image Classification using Convolutional Neural Network

Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Inspired by a blog post [1], we tried to predict the probability of an image getting a high number of likes on Instagram. We modified a pre-trained AlexNet ImageNet CNN model using Caffe on a new dataset of Instagram images with hashtag ‘me’ to predict the likability of photo...

متن کامل

Leaf Identification Using a Deep Convolutional Neural Network

Convolutional neural networks (CNNs) have become popular especially in computer vision in the last few years because they achieved outstanding performance on different tasks, such as image classifications. We propose a ninelayer CNN for leaf identification using the famous Flavia and Foliage datasets. Usually the supervised learning of deep CNNs requires huge datasets for training. However, the...

متن کامل

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nucleation and Atmospheric Aerosols

سال: 2021

ISSN: ['0094-243X', '1551-7616', '1935-0465']

DOI: https://doi.org/10.1063/5.0068599